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THE FRACTIONAL UNIT ROOT DISTRIBUTION

By FALLAW SOWELL!

Asymptotic distributions are derived for the ordinary least squares (OLS) estimate of a
first order autoregression when the series is fractionally integrated of order 1+ d, for
—1/2<d<1/2. The fractional unit root distribution is introduced to describe the
limiting distribution. The unit root distribution (d = 0) is seen to be an atypical member of
this family because its density is nonzero over the entire real line. For —1/2 <d <0 the
fractional unit root distribution has nonpositive support, while if 0 < d < 1/2 the fractional
unit root distribution has nonnegative support. Any misspecification of the order of
differencing leads to drastically different limiting distributions. Testing for unit roots is
further complicated by the result that the ¢ statistic in this model only converges when
d = 0. Results are proven by means of functional limit theorems.

KeywoRrbDs: Unit root distribution, fractional differencing, functional limit theorem.

1. INTRODUCTION

THE NEED TO TEST economic theories which imply random walks has stimulated a
large literature involving the unit root distribution (see Dickey and Fuller (1979,
1981), Evans and Savin (1981, 1984), Sargan and Bhargava (1983), Phillips
(1987)). One facet of the unit root literature has concerned weakening the
assumption of IID errors. In particular Phillips (1987) shows that the unit root
distribution can be used to test for a random walk if the errors satisfy a strong
mixing condition. Unfortunately, this condition may not be justified for some
economic time series. For example, dependency greater than allowed in Phillips
(1987), is permitted by fractionally integrated models which extend the
ARIMA( p, d, g) model to real values of d. Furthermore, studies that have
looked for fractional integration (Granger and Joyeux (1981), Geweke and
Porter-Hudak (1983)) have concluded that some economic time series possess
fractional unit roots.

This paper generalizes the unit root distribution to fractionally integrated
errors. It is shown that the limiting distributions of fractionally integrated series
are radically different than for series integrated of order zero or one. The
dissimilarities between the unit root distribution and other fractional unit root
distributions underscore the importance of considering fractional models.

The approach used to obtain the limiting distributions is similar to that of
Phillips (1987). Phillips uses functional limit theorems to obtain the unit root
distribution when the underlying random variables are strong mixing. Fraction-
ally integrated series have greater dependency than allowed in Phillips (1987) and
a different functional limit theorem is required to obtain the limiting distribu-
tions.

1 thank John Geweke, Sastry Pantula, Peter Bloomfield, a co-editor, and two anonymous referees
for helpful comments and suggestions. This is a generalization of Chapter 5 of my Ph.D. thesis, which
was supported by the Alfred P. Sloan Foundation through a Doctoral Dissertation Fellowship.
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496 FALLAW SOWELL

Section 2 summarizes general properties of fractionally integrated time series
and a related continuous stochastic process, fractional Brownian motion. In the
third section, a new distribution is introduced, the fractional unit root distribu-
tion. It characterizes the limiting distribution of the OLS estimate of the
parameter of an AR(1) model when the series is fractionally integrated. In the
fourth section, the distribution is studied through simulations and directions for
future research are discussed. Convergence in probability and in distribution will
be denoted by —7 and = respectively.

2. PRELIMINARY CONCEPTS
The fractional difference operator (1 — L)? is defined by its Maclaurin series
»  I'(—d+j)

-1 X oG n

where

r(z)= fwsz‘le”ds ifz>0,
=170

00 ifz=0.

If 2<0,I'(z) is defined in terms of the above expressions and the recurrence
formula

zI'(z)=T(z+1),

which holds for all values of z. Note that the recurrence formula and I'(0) = oo
imply that I'(z) has poles at the nonpositive integers.
If x, ~ IID(0, 02), then its partial sum

will be called integrated of order one, denoted y, ~ I(1), because after applying
the differencing operator (1 — L)! the series is IID(0, 02). Similarly, a series ¢,
will be called integrated of order d, denoted ¢, ~ I(d), if (1 — L)%, =u,~
IID(0, 6?). When d is not an integer the series is said to be fractionally
integrated.

A fractionally integrated series is stationary and ergodic for —1/2 <d<1/2.
The unusual characteristic of fractionally integrated series is the dependence
between distant observations. This can be seen in the autocovariance function or
the spectral density. If ¢, ~ I(d), then its autocovariance function is

r(1-2d)I(d+s)
TT(I(1-d)(A-d+s)™

Ye(s) = Elee, ]

The autocovariances have the same sign as d for s > 1 and the autocovariance
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function satisfies
r(1-24)
T(d)r(1-d) ™
The dependence between observations is noted in the hyperbolic decay which is

slower than the geometric decay of stationary ARMA models. The long run
dependence can also be seen in the spectral density which satisfies

lim £,(\)/A~24 = g2,
A—0

lim v,(s)/s* 1=
5= 0

As the frequency approaches zero, the spectral density either goes to zero, if
d <0, or infinity, if d> 0. One appeal of fractionally integrated time series is
their ability to capture a variety of long run behaviors with a single parameter.

A property of a fractionally integrated series is the dependence on d of the
growth of the partial sums’ variance. This implies that the distribution theory
developed in Phillips (1987) is not general enough to deal with fractionally
integrated series. In Phillips (1987), Assumption 2.1(c) requires the variance of
the partial sums to grow at a linear rate. The growth rates for fractionally
integrated series are presented in the following theorem. All proofs are collected
in the Appendix.

THEOREM 1: If ¢,~ I(d), —1/2<d <1/2, and Sy =X ¢, then
0’I'(1-2d)
(1+2d)F1+d)r(1-d)
I'(l+d+N) TI(+4d)
I'(-d+N) TI(-d)

oy =Var(Sy)=

and
0’I'(1-2d)
(1+2d)r(1+4)r1—-4d)’

lim Var(Sy)/N!*%=
N—-oo

Theorem 1 shows Var (S, ) = O(N'*2¢) which is an important characteristic of
processes that are fractionally integrated. The variance of the partial sums of IID
variables (d = 0) grows at the linear rate N. Each random shock is uncorrelated
with the others and only adds its own variance to the variance of the partial sum.
When —1/2 <d <0, each shock is negatively correlated with the others. There-
fore, the variance of the partial sum grows less than the variance of the individual
shock. When d is near —1/2 the negative covariances almost totally offsets the
added variance of the shock. For 0 < d < 1/2 the shocks are positively correlated
and the variance of the sum grows faster than the variance of a single shock.
When d is near 1/2, the growth of the variance of the partial sum is almost
quadratic. As shown below, this growth rate of the variance of partial sums is
needed to apply functional limit theorems.
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Fractional integration is a characteristic of discrete stochastic processes. Limit-
ing functions of these discrete series, however, will be described by a continuous
stochastic process, called fractional Brownian motion. Fractional Brownian mo-
tion was first introduced and studied in Mandelbrot and Van Ness (1968) and is
defined for d € (—1/2,1/2) by the stochastic integral

- 1 ! d
W, (1) = mfo(z—x) dW(x).

When d = 0 this reduces the Brownian motion. Fractional Brownian motion is a
stationary continuous Gaussian stochastic process, with mean zero and covari-
ance function

E|W, (1) = W,(s) l2= |t —s|'*24,
The interested reader should see Jonas (1983) for a thorough presentation of the
properties of fractional Brownian motion.

It is often possible to characterize limiting distributions of discrete stochastic
processes as functions of continuous stochastic processes by applying functional
limit theorems. The functional limit theorems that apply to fractionally inte-
grated time series are presented in Davydov (1970) and Taqqu (1975) and the
continuous stochastic process is fractional Brownian motion. The applicability of

these functional limit theorems to fractionally integrated time series is noted in
the following theorem.

THEOREM 2: If ¢,~ I(d) for —1/2<d<1/2 and if (1 — L)%, = u, have zero
mean, are IID, and E|u,|" < co for r> max[4, —8d/(1 + 2d)], then Z\(t)=
on Siny = Wy(2).

This is an invariance principle, i.e., the limiting distribution does not depend
on the parameters (variance, skewness, kurtosis,...) of the error process. For
fixed d, the same limiting distribution holds for all u, processes that satisfy the
assumptions.

3. UNIT ROOT STATISTICS WITH FRACTIONALLY INTEGRATED SERIES

The limiting distribution of the OLS estimate of an AR(1) model for a random
walk can be written as the ratio of functions of Brownian motions. Given the
model

x,=x,_,+te¢ for t=1,2,...,N,
x,=0,

where ¢, ~ IID(0, 62 < ), the least squares slope estimate,

N
Z Xi—1%,

B~=z
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has the following asymptotic distribution
R 1/2){w(1)* -1
NI i)

f w(t)? dt

0

(see Phillips (1987) and the references cited therein). Because the error process is
1(0), this result can be considered the answer to the special case d =0 of the
general question “What is the limiting distribution of 8 if g,~1(d)for —1/2 <
d<1/2? The answer to the general question is presented in the following
theorem.

)

THEOREM 3:2 Given the model

x,=x,_,+e¢ for t=1,2,...,N,

x,=0,
e,~1(d) -1/2<d<1/2,
with (1 — L)%, = u, satisfying the assumptions of Theorem 2 and
1 N
1.2 - 5 Z 512
2XN t=1
Ag=—F—"> By=—F—,
Exrz—l thz—l
t=1 t=1
then (B—1)=A,+ B, and
[1 ]1‘(1+d)
_+ —_—
Hw,)]? 2 r(i-d4
NAd=>———————2[ .0 and N'*%B = — ( ) .

_/;I[Wd(s)]zds fol[Wd(S)]zds

The limiting distribution of N ™»[L1+241( 8 _ 1) is called a fractional unit root
distribution. This limiting distribution is achieved by normalizing, by N if d >0
and by N'*24 if d<0. If d>0, then N<N'*2¢ and NB, converges in
probability to zero leaving asymptotically the distribution of NA4,. Conversely
when d < 0, the limiting distribution is that of N!*24B, because N > N!'*24 and
N'*244 , converges in probability to zero. Because 4, is a nonnegative random
variable, if d > 0 the fractional unit root distribution has nonnegative support.
Similarly, if 4 < 0 the support is nonpositive, because B, is a nonpositive random
variable. If d=0, NA, and N'*24B, jointly converge and the support of the
fractional unit root distribution is the entire real line.

21 thank Sastry Pantula for simplifying several steps of the proof and alleviating some unnecessary
assumptions of an earlier version.
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An immediate corollary is that the least squares estimate is consistent. The rate of
convergence depends on the order of integration in a surprising way. It is well
known that if x, is 1(0), the OLS estimate 8 converges at the rate N'/2, and if x,
is I(1), convergence is at the rate N. This suggests that the rate of convergence
increases with the order of integration. However, this is not the case. If a series is
I(1+4d) for 0<d<1/2, B converges at the rate N, the same for all 4. If
—1/2 <d <0, B converges at the rate N'*24 So for —1/2 <d < —1/4 the rate
of convergence is slower than N'/2,

Fractional unit root distributions pose problems when testing for unit roots.
The unit root distribution is not robust to any misspecification in the order of
integration. An alternative approach to testing for a unit root is to consider the ¢
statistic, which for this model is

N
th—lsl
=1

N /2

(thz—l) s

t=1

where

NS (= fx, )

t=1

Unfortunately, a similar problem occurs with this statistic. As the following
theorem notes, the statistic only converges when d = 0.

THEOREM 4: Given the model

x,=x,_,+e, for t=12,... N,
x=0,
e,~1(d), for —1/2<d<1/2,

and (1 — L)%, = u, satisfy the assumptions of Theorem 2, then

t—>? -0 if d<0,
t—>? w0 if d>0.

4. DISCUSSION

The rate at which N™»{L1+2d( 8 _ 1) converges to its limiting distribution is
slow for values of d near zero. The statistic is composed of the two random
variables N™x(L.1+2d14 apnd Nmax(L1+2d1p  Depending on the sign of d, one
of these converges to zero. The random variable that converges to zero (NB, if
d>0and N'*24, if d <0) does so at the rate N~ '>¢l which can be quite slow
for d near zero. This implies that (§—1) also converges very slowly to its
limiting distribution when d is near zero. This does not mean that the misspeci-
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FIGURE 1.—Kernel estimates of the densities of NA, and N'*29B, using 1000 samples with

N = 900.
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fication is irrelevant for small values of 4. Rather it implies that asymptotic
theory may be inapplicable.

To illustrate the fractional unit root distribution, 1000 samples of I(1+ d)
series were generated and estimates of 4, and B, were calculated. Samples of
900 observations were generated for five different values of d: —0.4,
—0.1,0.0,0.1,0.4. The densities of NA, and N'*29B, were estimated by the
kernel estimator

. 1 1000 [ 5 — 0’;
1) = Gaooyn &, q’( h )
where §; are the estimated values of NA, or N'*24B, for the 1000 samples and
¥(y) is the density defined by (15/16) (1 —y?)?) for —1<y <1 and zero
elsewhere. The value of & was chosen to minimize the integrated mean square
error (see Tapia and Thompson (1978, p. 67)). The estimated densities are
presented in Figure 1.

A striking feature of Figure 1 is the general agreement in the estimated
densities for different values of d. The densities of N'*2¢B, are all similar except
as d approaches —1/2 the density appears to be converging to unit mass at zero.
This is the case because the numerator of N'*2“B, equals zero at d = —1/2. The
similarity in the densities of NA, is due in part to its numerator which
asymptotically has a chi-square distribution with one degree of freedom and
hence is asymptotically independent of 4.

The similarity between these densities with different values of d suggest low
power for tests of the order of integration based on the N'*?B, and NA,.
Alternative approaches (i.e., statistics) are required to test for unit roots when the
data may be fractionally integrated. Tests that would be appropriate in this
situation would involve estimating the differencing parameter d. One approach is
the unconditional maximum likelihood estimation of a univariate
ARIMA( p, d, qg) model. The univariate maximum likelihood procedure is a
special case of the general results in Sowell (1988).

Graduate School of Industrial Administration, Carnegie Mellon University, Pitts-
burgh, PA 15213-3890, U.S.A.

Manuscript received July, 1987; final revision received March, 1989.

APPENDIX
The proof of Theorem 1 is simplified by the following.

LemMMA: For N=1,2,... withaand b+ —1,—-2,-3,...,
ﬁr(a+k)_ 1 I'(l+a+N) TI(1+a)]
= T(b+k) 1+a-b| I'(b+N) re) |
when b =0 this reduces to 1/(1 +a))[[(1 +a+ N)/I'(N)].
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PROOF: The lemma follows by induction and the relation zI'(z) = I'(z + 1). Q.E.D.

PROOF OF THEOREM 1: Write v,(s)=KI(d+s)/I'(1 —d+s) where K= o2I'(1 — 2d)/
(I'(d)I'(1 — d)). The variance of the partial sum can be written

]=

N—-1
~-NY,(0)+2 Y, (N-i)v.(i)

1=0

N—-1N—-:

—Zys<0)+22 X 7.()

1=0 k=1

N N—-k

- ZY;(O)+2Z Y %)

k=1 :=0

_I) Nik I(d+i)
TTQ-d) T &= T(-d+i)

I(d) N"‘“F(a’—1+i)]

TTra-d) ~ T(-d+i) |

Using the above lemma twice this reduces to

K I'Q+d+N) T(1+d)
d(1+2d)[ I(-d+N) TI(-d) ]

Using the definition of K, the fact that zI'(z) = I'(1 + z), and the result I'(a+ N)/I'(b+ N) ~ N*~*
as N — oo, the theorem is proven. Q.E.D.

PROOF OF THEOREM 2: Apply Theorem 2 from Davydov (1970) with Theorem 1 above. Note
Davydov (1970) uses y to denote 1 + 24. Q.E.D.

PROOF OF THEOREM 3: If the variance of x, is denoted by o2, then

‘N2 ZX 18

ON (=1

(-1 = —.

First consider the denominator,

1 X , 1 N L
— Lxt== 2 lov'x]
N 1 Nt=l

E fI/N [ZN(S)]zds

(t—-1)/N

= [[zv() ds= ['[Wa ()] ds

which holds for —1/2 <d <1 /2. The last result follows from the Continuous Mapping Theorem and
Theorem 2.
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Now consider the numerator

1 N N
N,%,,Zl 2Na,%,,§'1[ i 1]_2No ;
1 -1, 12 > &2
_?I'V—[UN XN] - ; f
N

2N[ N()] _2sz

ON =1

The first term when multiplied by N converges in distribution to (1,/2)[W,(1)]> for —1/2<d<1/2
again because of the Continuous Mapping Theorem and Theorem 2. This proves the limiting
distribution of the A, term. The limiting distribution of the second term follows by first noting

[ Es]—”’E£2=y(0)=——r(—li-o
=1 C ra-4ra-4)
by the Ergodic Theorem. Finally, using Theorem 1,
(1+2d)IQ-d)Ir(1+d)
T(1-2d) %
which shows the limiting distribution of B, and proves the theorem. Q.E.D.

Nl+2d/0}%l —

PROOF OF THEOREM 4: First show that s2 >? v,(0):

s2=nN-1 E (x—x_1—(B- 1)"1—1)2

It
3

Mz iMz

(8 _(é 1)x,_ 1)

I
Z
‘N

-2B-1)N" ‘Zx, e+ (f-1)°N" lzx, L.

As in the proof of Theorem 3, the first term converges in probability to yE(O). The other two terms
both converge to zero using the following reasoning for each:

o ud o 1Y
(B-1)N"! Z Xi-1 =°N(B_1)—ﬁ Z oy'x,_ =7 0
=1 =1

I
—

because
1 X . X
N ,2=:16N X1 =>j(; W,(s) ds
as in the proof of Theorem 3 and
ov(B-1)-70
by Theorem 1 and Theorem 3. Similar reasoning shows

N
(B-1)°N1Y x2,~7 0.
=1

Now, the ¢ statistic is
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The same reasoning used in the proof of Theorem 3 shows that the denominator converges:

N 1/2 N 1/2 1/2
‘/ﬁlaN(Zx,z_l) =('—17 thz-l) 3(_/:%(5)2‘1’) .

=1 Noy =1
Finally, consider the numerator. From the proof of Theorem 3,
N N
Z xr~1£r=x)2v_ Z 512;
=1 t=1

hence, the numerator can be written
VN N
-1 2
[N E [
=1

ON
and, because oy is O(N'/2*%), if d> 0, (6y/VN) = oo and (YN /ay) — 0, while if <0, (ay/VN)
— 0 and (VN /0, ) = oo which proves the theorem. Q.E.D.

[
TIA\;["A_’I"N]Z—
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